All Issue

2022 Vol.67, Issue 1 Preview Page

Original Research Article

1 March 2022. pp. 41-52
Abstract
References
1
Arif, Y., P. Singh, H. Siddiqui, A. Bajguz, and S. Hayat. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156 : 64-77. 10.1016/j.plaphy.2020.08.04232906023
2
Asseng, S., F. Ewert, P. Martre, R. P. Rotter, D. B. Lobell, D. Cammarano, B. A. Kimball, M. J. Ottman, G. W. Wall, J. W. White, M. P. Reynolds, P. D. Alderman, P. V. V. Prasad, P. K. Aggarwal, J. Anothai, B. Basso, C. Biernath, A. J. Challinor, G. De Sanctis, J. Doltra, E. Fereres, M. Garcia-Vile, S. Gayler, G. Hoogenboom, L. A. Hunt, R. C. Izaurralde, M. Jabloun, C. D. Jones, K. C. Kersebaum, A. K. Koehler, C. Muller, S. N. Kumar, C. Nendel, G. O'Leary, J. E. Olesen, T. Palosuo, E. Priesack, E. E. Rezaei, A. C. Ruane, M. A. Semenov, I. Shcherbak, C. Stockle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P. J. Thorburn, K. Waha, E. Wang, D. Wallach, I. Wolf, Z. Zhao, and Y. Zhu. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5 : 143-147. 10.1038/nclimate2470
3
Fujita, M., Y. Fujita, Y. Noutoshi, F. Takahashi, Y. Narusaka, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9 : 436-442. 10.1016/j.pbi.2006.05.01416759898
4
Giraldo, P., E. Benavente, F. Manzano-Agugliaro, and E. Gimenez. 2019. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy-Basel 9. 10.3390/agronomy9070352
5
Guo, H. J., Z. J. Huang, M. Q. Li, and Z. N. Hou. 2020. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Scientific Reports 10. 10.1038/s41598-020-79045-z33318587PMC7736318
6
Han, Y., S. Gao, K. Muegge, W. Zhang, and B. Zhou. 2015. Advanced Applications of RNA Sequencing and Challenges. Bioinform Biol Insights 9 : 29-46. 10.4137/BBI.S2899126609224PMC4648566
7
Hasanuzzaman, M., M. M. Alam, A. Rahman, M. Hasanuzzaman, K. Nahar, and M. Fujita. 2014. Exogenous Proline and Glycine Betaine Mediated Upregulation of Antioxidant Defense and Glyoxalase Systems Provides Better Protection against Salt- Induced Oxidative Stress in Two Rice (Oryza sativa L.) Varieties. Biomed Research International 2014. 10.1155/2014/75721924991566PMC4065706
8
Karimi, R. and J. Farshadfar. 2004. Multivariate Analysis of Salt Tolerance in Wheat Cultivars (Bread Wheat and Durum Wheat). Acta Physiologiae Plantarum 26 : 142-142.
9
Kizilgeci, F., M. Yildirim, M. S. Islam, D. Ratnasekera, M. A. Iqbal, and A. E. L. Sabagh. 2021. Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability 13. 10.3390/su13073725
10
Li, P., Y. J. Li, F. J. Zhang, G. Z. Zhang, X. Y. Jiang, H. M. Yu, and B. K. Hou. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant Journal 89 : 85-103. 10.1111/tpj.1332427599367
11
Ludwig, A. A., T. Romeis, and J. D. G. Jones. 2004. CDPK-mediated signalling pathways: specificity and cross-talk. Journal of Experimental Botany 55 : 181-188. 10.1093/jxb/erh00814623901
12
Luo, Y., R. Reid, D. Freese, C. B. Li, J. Watkins, H. Z. Shi, H. Y. Zhang, A. Loraine, and B. H. Song. 2017. Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Scientific Reports 7. 10.1038/s41598-017-09241-x28852001PMC5575116
13
Ma, S. S., Q. Q. Gong, and H. J. Bohnert. 2006. Dissecting salt stress pathways. Journal of Experimental Botany 57 : 1097-1107. 10.1093/jxb/erj09816510518
14
Mustroph, A., J. Stock, N. Hess, S. Aldous, A. Dreilich, and B. Grimm. 2013. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. Frontiers in Plant Science 4. 10.3389/fpls.2013.0012523717315PMC3653104
15
Nakagami, H., A. Pitzschke, and H. Hirt. 2005. Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science 10 : 339-346. 10.1016/j.tplants.2005.05.00915953753
16
Pan, J. W., Z. Li, Q. G. Wang, Y. A. Guan, X. B. Li, Y. G. Huangfu, F. H. Meng, J. L. Li, S. J. Dai, and W. Liu. 2021. Phosphoproteomic Profiling Reveals Early Salt-Responsive Mechanisms in Two Foxtail Millet Cultivars. Frontiers in Plant Science 12. 10.3389/fpls.2021.71225734616412PMC8488109
17
Pandian, B. A., R. Sathishraj, M. Djanaguiraman, P. V. V. Prasad, and M. Jugulam. 2020. Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants 9. 10.3390/antiox905045432466087PMC7278705
18
Shen, X. Y., Z. L. Wang, X. F. Song, J. J. Xu, C. Y. Jiang, Y. X. Zhao, C. L. Ma, and H. Zhang. 2014. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Molecular Biology 86 : 303-317. 10.1007/s11103-014-0230-925092201
19
Smith, C. A., V. J. Melino, C. Sweetman, and K. L. Soole. 2009. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiologia Plantarum 137 : 459-472. 10.1111/j.1399-3054.2009.01305.x19941623
20
Sun, Y. L., Z. Z. Qiao, W. Muchero, and J. G. Chen. 2020. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. Frontiers in Plant Science 11. 10.3389/fpls.2020.59630133362827PMC7758398
21
Turan, M. A., A. H. A. Elkarim, N. Taban, and S. Taban. 2009. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research 4 : 893-897.
22
Turkan, I. and T. Demiral. 2009. Recent developments in understanding salinity tolerance. Environmental and Experimental Botany 67 : 2-9. 10.1016/j.envexpbot.2009.05.008
23
Wilhelm, B. T., S. Marguerat, S. Watt, F. Schubert, V. Wood, I. Goodhead, C. J. Penkett, J. Rogers, and J. Bahler. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453 : 1239-U39. 10.1038/nature0700218488015
24
Xiong, L. and J. K. Zhu. 2002. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Environment 25 : 131-139. 10.1046/j.1365-3040.2002.00782.x11841658
25
Yong, H. Y., Z. W. Zou, E. P. Kok, B. H. Kwan, K. Chow, S. Nasu, M. Nanzyo, H. Kitashiba, and T. Nishio. 2014. Comparative Transcriptome Analysis of Leaves and Roots in Response to Sudden Increase in Salinity in Brassica napus by RNA-seq. Biomed Research International 2014. 10.1155/2014/46739525177691PMC4142189
26
Yousefirad, S., H. Soltanloo, S. S. Ramezanpour, K. Z. Nezhad, and V. Shariati. 2020. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. Plos One 15. 10.1371/journal.pone.022951332187229PMC7080263
27
Zhao, J., Y. L. Gao, Z. Y. Zhang, T. Z. Chen, W. Z. Guo, and T. Z. Zhang. 2013. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. Bmc Plant Biology 13. 10.1186/1471-2229-13-11023915077PMC3750506
28
Zhu, J. K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6 : 441-445. 10.1016/S1369-5266(03)00085-2
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 67
  • No :1
  • Pages :41-52
  • Received Date : 2022-01-20
  • Revised Date : 2022-02-08
  • Accepted Date : 2022-02-08