Cao, Z., X. Yao, H. Liu, T. Cheng, Y. Tian, W. Cao, and Y. Zhu. 2019. Comparison of the abilities of vegetation indices and photosynthetic parameters to detect heat stress in wheat. Agric. For. Meteorol. 265 : 121-136.
10.1016/j.agrformet.2018.11.009Chen, J., Q. Zhang, B. Chen, Y. Zhang, L. Ma, Z. Li, X. Zhang, Y. Wu, S. Wang, and R. A. Mickler. 2020. Evaluating multi-angle photochemical reflectance index and solar-induced fluorescence for the estimation of gross primary production in maize. Remote Sens. 12(17) : 2812.
10.3390/rs12172812Hancock, R. D., W. L. Morris, L. J. Ducreux, J. A. Morris, M. Usman, S. R. Verrall, J. Fuller, C. G. Simpson, R. Zhang, and P. E. Hedley. 2014. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 37(2) : 439-450.
10.1111/pce.1216823889235Ierna, A. 2023. Water management in potato. In Potato Production Worldwide (pp. 87-100). Elsevier.
10.1016/B978-0-12-822925-5.00015-3Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter Jr. 1981. Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4) : 1133-1138.
10.1029/WR017i004p01133Kim, Y.-U. and B.-W. Lee. 2016. Effect of high temperature, daylength, and reduced solar radiation on potato growth and yield. Korean J. Agric. For. Meteorol. 18(2) : 74-87.
10.5532/KJAFM.2016.18.2.74Korea Meteorological Administration (KMA). 2024. Temperature data. https://data.kma.go.kr/stcs/grnd/grndTaList.do?pgmNo=70. Last accessed on August 22, 2024.
Korean Statistical Information Service (KOSIS). 2024. Potato Production Volume (Including Rate of Increase/Decrease). https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0026&conn_path=I3. Last accessed on August 22, 2024.
Lazarević, B., K. Carović-Stanko, T. Safner, and M. Poljak. 2022. Study of high-temperature-induced morphological and physiological changes in potato using nondestructive plant phenotyping. Plants 11(24) : 3534.
10.3390/plants1124353436559644PMC9783218Lee, G., J. Choi, Y. Park, G. Jung, D. Kwon, K. Jo, C. Cheon, D. Chang, and Y. Jin. 2022. Changes of yield and quality in potato (Solanum tuberosum L.) by heat treatment. Korean J. Agric. For. Meteorol. 24(3) : 145-154.
Lee, Y.-H., W.-G. Sang, J.-K. Baek, J.-H. Kim, P. Shin, M.-C. Seo, and J.-I. Cho. 2020. The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops. PloS one 15(10) : e0241081.
10.1371/journal.pone.024108133085713PMC7577495Li, L., Y. Qin, Y. Liu, Y. Hu, and M. Fan. 2012. Leaf positions of potato suitable for determination of nitrogen content with a SPAD meter. Plant Prod. Sci. 15(4) : 317-322.
10.1626/pps.15.317Luo, S., Y. He, Q. Li, W. Jiao, Y. Zhu, and X. Zhao. 2020. Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage. Plant Methods 16 : 1-14.
10.1186/s13007-020-00693-333292407PMC7654003Marinus, J. and K. Bodlaender. 1975. Response of some potato varieties to temperature. Potato Res. 18(2) : 189-204.
10.1007/BF02361722National Institute of Crop Science (NICS). 2021. Field Book of Cultivation Techniques and Research Standards for Major Upland Crops.
National Institute of Meteorological Sciences (NIMS). 2014. Global Climate Change Outlook Report 2014.
Ramírez, D., W. Yactayo, R. Gutiérrez, V. Mares, F. De Mendiburu, A. Posadas, and R. Quiroz. 2014. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hortic. 168 : 202-209.
10.1016/j.scienta.2014.01.036Rural Development Administration (RDA). 2020. Potato - Agricultural Technology Guide 31 (Revised Edition) (Vol. 31).
Romero, A. P., A. Alarcón, R. I. Valbuena, and C. H. Galeano. 2017. Physiological assessment of water stress in potato using spectral information. Front. Plant Sci. 8 : 1608.
10.3389/fpls.2017.0160828979277PMC5611683Rud, R., Y. Cohen, V. Alchanatis, A. Levi, R. Brikman, C. Shenderey, B. Heuer, T. Markovitch, Z. Dar, and C. Rosen. 2014. Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precis. Agric. 15 : 273-289.
10.1007/s11119-014-9351-zSingh, B., S. Kukreja, and U. Goutam. 2020. Impact of heat stress on potato (Solanum tuberosum L.): Present scenario and future opportunities. J. Hortic. Sci. Biotech. 95(4) : 407-424.
10.1080/14620316.2019.1700173Sun, C., J. Zhou, Y. Ma, Y. Xu, B. Pan, and Z. Zhang. 2022. A review of remote sensing for potato traits characterization in precision agriculture. Front. Plant Sci. 13 : 871859.
10.3389/fpls.2022.87185935923874PMC9339983Tang, R., S. Niu, G. Zhang, G. Chen, M. Haroon, Q. Yang, O. P. Rajora, and X.-Q. Li. 2018. Physiological and growth responses of potato cultivars to heat stress. Botany 96(12) : 897-312.
10.1139/cjb-2018-0125- Publisher :The Korean Society of Crop Science
- Publisher(Ko) :한국작물학회
- Journal Title :The Korean Journal of Crop Science
- Journal Title(Ko) :한국작물학회지
- Volume : 69
- No :4
- Pages :390-399
- Received Date : 2024-10-30
- Revised Date : 2024-11-18
- Accepted Date : 2024-11-19
- DOI :https://doi.org/10.7740/kjcs.2024.69.4.390