All Issue

2021 Vol.66, Issue 4 Preview Page

Original Research Article

1 December 2021. pp. 318-325
Cai, X. and S. S. Xu. 2007. Meiosis-driven genome variation in plants. Current Genomics. 8 : 151-161. 10.2174/13892020778083384718645601PMC2435351
Cai, X., S. S. Xu, and X. Zhu. 2010. Mechanism of haploidy-dependent unreductional meiotic cell division in polyploid wheat. Chromosoma. 119 : 275-285. 10.1007/s00412-010-0256-y20127104
Chen, P. D., H. Tsujimoto, and B. S. Gill. 1994. Transfer of PhI genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor. Appl. Genet. 88 : 97-101. 10.1007/BF0022240024185888
Cho, S.-W., T. Ishii, N. Matsumoto, H. Tanaka, A. E. Eltayeb, and H. Tsujimoto. 2011a. Effect of the cytidine analogue zebularine on wheat mitotic chromosomes. Chromosome Sci. 14 : 23-28.
Cho, S.-W., Y. Moritama, T. Ishii, M. Kishii, H. Tanaka, A. E. Eltayeb, and H. Tsujimoto. 2011b. Homology of two alien chromosomes during meiosis in wheat. Chromosome Sci. 14 : 45-52.
Christman, J. K. 2002. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 21 : 5483-5495. 10.1038/sj.onc.120569912154409
De Las Hedras, J. I., I. P. King, and J. S. Parker. 2001. 5-azacytidine induces chromosomal breakage in the root tips of wheat carrying the cuckoo chromosome 4SL from Aegilops sharonensis. Heredity. 87 : 474-479. 10.1046/j.1365-2540.2001.00931.x11737296
Edet, O. U., Y. S. A. Gorafi, S.-W. Cho, M. Kishii, and H. Tsujimoto. 2018. Novel molecular marker-assisted strategy for production of wheat-Leymus mollis chromosome addition lines. Sci. Rep. 8 : 16117. 10.1038/s41598-018-34545-x30382155PMC6208378
Fu, S., Z. Lv, X. Guo, X. Zhang, and F. Han. 2013. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J. Genet. Genomics. 40 : 413-420. 10.1016/j.jgg.2013.05.00523969250
Gill, K. S., B. S. Gill, T. R. Endo, and Y. Mukai. 1993. Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics. 134 : 1231-1236. 10.1093/genetics/134.4.12318375657PMC1205590
Kikuchi, S., Y. Saito, H. Ryuto, N. Fukunishi, T. Abe, H. Tanaka, and H. Tsujimoto. 2009. Effects of heavy-ion beams on chromosomes of common wheat, Triticum aestivum. Mutation Res. 669 : 63-66. 10.1016/j.mrfmmm.2009.05.00119442674
Kishii, M., R. R. C. Wang, and H. Tsujimoto. 2003. Characteristics and behaviour of the chromosomes of Leymus mollis and L. racemosus (Triticeae, Poaceae) during mitosis and meiosis. Chromosome Res. 11 : 741-748. 10.1023/B:CHRO.0000005774.00726.7114712860
Kishii, M., T. Yamada, T. Sasakuma, and H. Tsujimoto. 2004. Production of wheat-Leymus racemosus chromosome addition lines. Theor. Appl. Genet. 109 : 255-260. 10.1007/s00122-004-1631-y15057417
Lukaszewski, A. J. 1995. Chromatid and chromosome type breakage-fusion-bridge cycles in wheat (Triticum aestivum L). Genetics. 140 : 1069-1085. 10.1093/genetics/140.3.10697672578PMC1206662
Marquez, V. E., J. A. Kelley, R. Agbaria, T. Ben-Kasus, J. C. Cheng, C. B. Yoo, and P. A. Jones. 2005. Zebularine: A unique molecule for an epigenetically based strategy in cancer chemotherapy. N. Y. Acad. Sci. 1058 : 246-254. 10.1196/annals.1359.03716394141
Martinez-Perez, E., P. Shaw, S. Reader, L. Aragon-Alcaide, T. Miller, and G. Moore. 1999. Homologous chromosome pairing in wheat. J. Cell. Sci. 112 : 1761-1769. 10.1242/jcs.112.11.176110318768
Molnár, I., E. Benavente, and M. Molnár-Láng. 2009. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolor genomic in situ hybridization. Genome. 52 : 156-165. 10.1139/G08-11419234564
Moore, G. 2008. The Ph1 locus-a story 50 years in the making. In: Appels R, Eastwood R, Lagudah E et al. (ed) 11th international wheat genetics symposium, University of Sydney Press, Sydney, Australia (
Piskala, A. and F. Sorm. Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. 1964. Collect. Czech. Chem. Commun. 29(9) : 2060-2076. 10.1135/cccc19642060
Rao, S. P., M. P. Rechsteiner, C. Berger, J. A. Sigrist, D. Nadal, and M. Bernasconi. 2007. Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkitt’s lymphoma Akata cells. Mol. Cancer. 6 : 3. 10.1186/1476-4598-6-317214905PMC1781464
Rezaei, M., A. Arzani, and B.E. Sayed-Tabatabaei. 2010. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and their synthetic hexaploid wheat derivates influenced by meiotic restitution and heat stress. J. Genet. 89(4) : 401-407. 10.1007/s12041-010-0058-221273690
Soni, A., T. Murmann-Konda, M. Siemann-Loekes, G.E. Pantelias, and G. Iliakis. 2020. Chromosome breaks generated by low doses of ionizing radiation in G2-phase are processed exclusively by gene conversion. DNA Repair. 89 : 102828. 10.1016/j.dnarep.2020.10282832143127
Terasawa, M., H. Ogawa, Y. Tsukamoto, M. Shinohara, K. Shirahige, N. Kleckner, and T. Ogawa. 2007. Meiotic recombination-related DNA synthesis and its implications for cross-over and non-cross-over recombinant formation. Proc. Natl. Acad. Sci. 104 : 5965-5970. 10.1073/pnas.061149010417384152PMC1851600
Tsujimoto, H. 2005. Gametocidal genes in wheat as the inducer of chromosome breakage. Wheat Inf Serv. 100 : 33-48.
Zhang, P., W. Li, B. Friebe, and B. S. Gill. 2008. The origin of a “Zebra” chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromosome evolution and step changes in chromosome number. Genetics. 179 : 1169-1177. 10.1534/genetics.108.08959918562667PMC2475724
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 66
  • No :4
  • Pages :318-325
  • Received Date :2021. 09. 16
  • Revised Date :2021. 11. 14
  • Accepted Date : 2021. 11. 15