All Issue

2021 Vol.66, Issue 2

Research Article

June 2021. pp. 105-111
Abstract
References
1
Fukushima, K. 1980. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36 : 193-202. 10.1007/BF003442517370364
2
Han, L., G. Yang, H. Feng, C. Zhou, H. Yang, B. Xu, Z. Li, and X. Yang. 2018. Quantitative Identification of Maize Lodging-Causing Feature Factors using Unmanned Aerial Vehicle Images and a Nomogram Computation. Remote Sensing 10(10) : 1528. 10.3390/rs10101528.
3
He, W., J. Y. Yang, C. F. Drury, W. N. Smith, B. B. Grant, P. He, B. Qian, W. Zhou, and G. Hoogenboom. 2018. Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. Agricultural Systems 159 : 187-198. http://dx.doi.org.10.1016/jagsy.2017.01.025. 10.1016/j.agsy.2017.01.025
4
Im, J. M., W. Y. Kim, W. J. Byoum, and S. J. Shin. 2018. Fruit price prediction study using artificial intelligence. The Journal of the Convergence on Culture Technology 4(2) : 197-204. http://dx.doi.org/10.17703/JCCT.2018.4.2.197.
5
Jang, H. and S. Cho. 2016. Automatic Tagging for Social images using Convolution Neural Networks. Korean Institute of Information Scientists and Engineers 43(1) : 47-53. http://dx.doi.org/10.5626/JOK.2016.43.1.47. 10.5626/JOK.2016.43.1.47
6
Joo, G., C. Park, and H. Im. 2020. Performance Evaluation of Machine Learning Optimizers. Journal of Institute of Korean Electrical and Electronics Engineers 24(3) : 766-776. http://dx.doi.org/10.7471/ikeee.2020.24.3.766
7
Khabbazan, S., P. Vermunt, S. Steele-Dunne, L. R. Arntz, C. Marinetti, D. Valk, L. Iannini, R. Molijn, K. Westerdijk, and C. Sanve. 2019. Crop monitoring Using Sentinel-1 Data: A Case Study from The Netherlands. Remote Sensing 11(16) : 1887. 10.3390/rs11161887
8
Kim, S. J., J. G. Won, D. J. Ahn, and S. D. Park. 2008. Influence of Viviparous Germination on Quality and Yield in Rice. Korean Journal of Crop Science 53(S) : 15-18.
9
Kim, Y. 2021. An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering. Tunnel and Underground Space 31(1) : 25-40. 10.7474/TUS.2021.31.1.025
10
Kim, Y., G. H. Kwak, K. D. Lee, S. I. Na, C. W. Park, and N. W. Park. 2018. Performance Evaluation of machine learning and Deep Learning Algorithms in Crop Classification: Imapact of Hyper-parameters and Training Sample Size. Korean Journal of Remote Sensing 34(5) : 811-827. http://dx.doi.org/10.780/kjrs.2018.34.5.9.
11
Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances in neural information processing systems.
12
Lee, J. G., S. Jun, Y. W. Cho, H. Lee, G. B. Kim, J. B. Seo, and N. Kim. 2017. Deep Learning in Medical Imaging: General Overview. Korean Journal of Radiology 18(4) : 570-584. 10.3348/kjr.2017.18.4.570.
13
Lim, H. K., J. B. Kim, D. H. Kwon, and Y. H. Han. 2017. Comparison Analysis of TensorFlow's Optimizer Based on MNIST's CNN Model. Journal of Advanced Technology Research 2(1) : 6-14.
14
Liu, T., R. Li, X. Zhong, M. Jiang, X. Jin, P. Zhou, S. Liu, C. Sun, and W. Guo. 2018. Estimates of rice lodging using indices from UAV visible and thermal infrared images. Agricultural and Forest Meteorology 252: 144-154. 10.1016/j.agrformet.2018.01.021.
15
Miao, Z., K. M. Gaynor, J. Wang, Z. Liu, O. Muellerklein, M. S. Norouzzadeh, A. Mclntuff, R. C. K. Bowie, R. Nathan, S. X. Yu, and W. M. Getz. 2019. Insights and approaches using deep learning to classify wildlife. Scientific Reports 9 : 8137. Heetps://doi.org/10.1038/s41598-019-44565-w. 10.1038/s41598-019-44565-w31148564PMC6544615
16
Ministry of Agriculture, Food and rural Affairs (MAFRA), 2020. "The purchase of rice damaged by typhoons", Retrieved from https://www.mafra.go.kr/mafra/293/subview.do?enc=Zm5jdDF8QEB8JTJGYmJzJTJGbWFmcmElMkY2OCUyRjMyNDk5MCUyRmFydGNsVmlldy5kbyUzRmJic0NsU2VxJTNEJTI2cmdzRW5kZGVTdHIlM0QlMjZiYnNPcGVuV3JkU2VxJTNEJTI2cGFzc3dvcmQlM0QlMjZzcmNoQ29sdW1uJTNEJTI2cGFnZSUzRDElMjZyZ3NCZ25kZVN0ciUzRCUyNnJvdyUzRDEwJTI2aXNWaWV3TWluZSUzRGZhbHNlJTI2c3JjaFdyZCUzRCUyNg%3D%3D
17
Nesbit, P. R. and C. H. Hugenholtz. 2019. Enhancing UAV-SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sensing 11(3) : 239. 10.3390/rs11030239.
18
Park, H. J. 2020. Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning'. Journal of Korea Institute of Information, Electronics, and Communication Technology 13(4) : 283-292. http://dx.doi.org/10.17661/jkiiect.2020.13.4.283.
19
Park, J. S. and H. D. Kim. 2009. Viviparous germination characteristics of rice varieties adaptable to central region of Korea. Korean Journal of Crop Science 54(3) : 241-248.
20
Park, K. B. and R. K. Park. 1984. Studies on the viviparous germination of Indica × Japonica type varieties in paddy rice. Korean Journal of Crop Science 29(1) : 15-18.
21
Robinson, T. R., N. Rosser, and R. J. Walters. 2019. The Spatial and Temporal Influence of Cloud Cover on Satellite-Based Emergency Mapping of Earthquake Disasters. Scientific Reports 9: 12455. 10.1038/s41598-019-49008-0.
22
Shahbazi, M., G. Sohn, J. Theau, and P. Menard. 2015. Development and Evauation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling. Sensors 15(11) : 27493-27524. 10.3390/s151127493.
23
VerMilyea, M., J. M. M. Hall, S. M. Diakiw, A. Johnston, T. Nguyen, D. Perugini, A. Miller, A. Picou, A. P. Murphy, and M. Perugini. 2020. Development of an artificial intelligence based assessment model for prediction of embryo viability using static images capured by optical light microscopy during IVF. Human Reproduction 35(4) : 770-784. 10.1093/humrep/deaa013.
24
Wilke, N., B. Siegmann, L. Klingbeil, A. Burkart, T. Kraska, O. Muller, A. Doorn, S. Heinemann, and U. Rascher. 2019. Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach. Remote Sensing 11(515) : 10.3390/rs11050515.
25
Yadav, S. S. and S. M. Jadhav. 2019. Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data 6:113. 10.1186/s40537-019-0276-2.
26
Yang, H., E. Chen, Z. Li, C. Zhao, G. Yang, S. Pignatti, R. Casa, and L. Zhao. 2015. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data. International Journal of Applied Earch Observation and Geoinformation 34 : 157-166. http://dx.doi.org/10.1016/j.jag.2014.08.010. 10.1016/j.jag.2014.08.010
27
Zhou, L., Q. Li, G. Huo, and Y. Zhou. 2017. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features. Computational Intelligence and Neuroscience. 10.1155.2017/3792805
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 66
  • No :2
  • Pages :105-111
  • Received Date :2021. 03. 16
  • Revised Date :2021. 04. 30
  • Accepted Date : 2021. 05. 01