All Issue

2024 Vol.69, Issue 4 Preview Page
1 December 2024. pp. 209-215
Abstract
References
1

Chauhan, S., R. Darvishzadeh, M. Boschetti, M. Pepe, and A. Nelson. 2019. Remote sensing-based crop lodging assessment: Current status and perspectives. ISPRS J. Photogramm. Remote Sens. 151 : 124-40.

10.1016/j.isprsjprs.2019.03.005
2

Choudhary, S. S., S. Biswal, R. Saha, and C. Chatterjee. 2021. A non-destructive approach for assessment of nitrogen status of wheat crop using unmanned aerial vehicle equipped with RGB camera. Arabian J. Geosci. 14(17) : 1739.

10.1007/s12517-021-08139-3
3

Christ, B. and S. Hörtensteiner. 2014. Mechanism and significance of chlorophyll breakdown. J. Plant Growth Regul. 33 : 4-20.

10.1007/s00344-013-9392-y
4

Dahiya, S., S. Kumar, C. Chaudhary, and C. Chaudhary. 2018. Lodging: Significance and preventive measures for increasing crop production. Int. J. Chem. Stud. 6(1) : 700-705.

5

Elanchezhyan, K., T. Sathyan, and K. R. Manikandan. 2020. Brown plant hopper (BPH) and their management in rice. Res. Today 2(4) : 90-2.

6

Feng, H., H. Tao, Z. Li, G. Yang, and C. Zhao. 2022. Comparison of UAV RGB imagery and hyperspectral remote-sensing data for monitoring winter wheat growth. Remote Sens. 14(15) : 3811.

10.3390/rs14153811
7

Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58(3) : 289-298.

10.1016/S0034-4257(96)00072-7
8

Gitelson, A., and M. N. Merzlyak. 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol., B 22(3) : 247-252.

10.1016/1011-1344(93)06963-4
9

Hörtensteiner, S. 2006. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57(1) : 55-77.

10.1146/annurev.arplant.57.032905.10521216669755
10

Ishimaru, K., E. Togawa T. Ookawa, T. Kashiwagi, Y. Madoka, and N. Hirotsu. 2008. New target for rice lodging resistance and its effect in a typhoon. Planta 227 : 601-609.

10.1007/s00425-007-0642-817960419
11

Jang, G., J. Kim, J. K. Yu, H. J. Kim, Y. Kim, D. W. Kim, K. H. Kim, C. W. Lee, and Y. S. Chung. 2020. Cost-effective unmanned aerial vehicle (UAV) platform for field plant breeding application. Remote Sens. 12(6) : 998.

10.3390/rs12060998
12

Karthika, K. S., I. Rashmi, and M. S. Parvathi. 2018 Biological functions, uptake and transport of essential nutrients in relation to plant growth. Plant Nutrients and Abiotic Stress Tolerance. pp. 1-49.

10.1007/978-981-10-9044-8_1
13

Khanal, S., K. Kc, J. P. Fulton, S. Shearer, and E. Ozkan. 2020. Remote sensing in agriculture-accomplishments, limitations, and opportunities. Remote Sens. 12(22) : 3783.

10.3390/rs12223783
14

Li, X., X. Li, W. Liu, B. Wei, X. Xu. 2021. A UAV-based framework for crop lodging assessment. Eur. J. Agron. 123 : 126201.

10.1016/j.eja.2020.126201
15

Liao, P., S. M. Bell, L. Chen, S. Huang, H. Wang, J. Miao, Y. Qi, Y. Sun, B. Liao, Y. Zeng, and H. Wei. 2023. Improving rice grain yield and reducing lodging risk simultaneously: A meta-analysis. Eur. J. Agron. 143 : 126709.

10.1016/j.eja.2022.126709
16

Mandal, D., A. Bhattacharya, Y. S. Rao, D. Mandal, A. Bhattacharya, and Y. S. Rao. 2021. Radar vegetation indices for crop growth monitoring. Radar Remote Sensing for Crop Biophysical Parameter Estimation. pp. 177-228.

10.1007/978-981-16-4424-5_7
17

Ogle, H. J. 1997. Abiotic diseases of plants. Plant Pathogens and Plant Diseases; Brown, JF, Ogle, HJ, Eds. pp. 156-71.

18

Pareek, S., N. A. Sagar, S. Sharma, V. Kumar, T. Agarwal, G. A. González‐Aguilar, and E. M. Yahia. 2017. Chlorophylls: Chemistry and biological functions. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd Edition. pp. 269-284.

10.1002/9781119158042.ch14
19

Qiao, K., W. Zhu, Z. Xie, and P. Li, 2019. Estimating the seasonal dynamics of the leaf area index using piecewise LAI-VI relationships based on phenophases. Remote Sens. 11(6) : 689.

10.3390/rs11060689
20

Ramli, N., S. Yusup, B. W. B. Kueh, P. S. D. Kamarulzaman, N. Osman, M. A. Rahim, R. Aziz, S. Mokhtar, and A. B. Ahmad. 2018. Effectiveness of biopesticides against brown planthopper (Nilaparvata lugens) in paddy cultivation. Sustainable Chem. Pharm. 8 : 16-20.

10.1016/j.scp.2018.01.001
21

Rondeaux, G., M. Steven, and F. Baret. 1996. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55(2) : 95-107.

10.1016/0034-4257(95)00186-7
22

Rossi, G. 2019. Vegetative vigor of maize crop obtained through vegetation indexes in orbital and aerial sensors images. Rev. Bras. Eng. Biossistemas 13 : 195-206.

10.18011/bioeng2019v13n3p195-206
23

Roujean, J. L. and F. M. Breon. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 51(3) : 375-384.

10.1016/0034-4257(94)00114-3
24

Rouse Jr, J. W., R. H. Haas, D. W. Deering, J. A. Schell, and J. C. Harlan. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (No. E75-10354).

25

Sharma, A., V. Kumar, B. Shahzad, M. Ramakrishnan, G. P. Singh Sidhu, A. S. Bali, N. Handa, D. Kapoor, P. Yadav, K. Khanna, and P. Bakshi. 2020. Photosynthetic response of plants under different abiotic stresses: a review. J. Plant Growth Regul. 39:509-31.

10.1007/s00344-019-10018-x
26

Shrestha, C., I. Ona, S. Muthukrishnan, and T. Mew. 2008. Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani. Eur. J. Plant Pathol. 120 : 69-77.

10.1007/s10658-007-9199-4
27

Shrestha, J., M. Kandel, S. Subedi, and K. K. Shah. 2020. Role of nutrients in rice (Oryza sativa L.): A review. Agrica 9(1) : 53-62.

10.5958/2394-448X.2020.00008.5
28

Tan, S., A. K. Mortensen, X. Ma, B. Boelt, and R. Gislum. 2021. Assessment of grass lodging using texture and canopy height distribution features derived from UAV visual-band images. Agric. For. Meteorol. 308 : 108541.

10.1016/j.agrformet.2021.108541
29

Wang, C. 2021. At-sensor radiometric correction of a multispectral camera (RedEdge) for sUAS vegetation mapping. Sensors 21(24) : 8224.

10.3390/s2124822434960318PMC8704258
30

Wu, D. H., C. T. Chen, M. D. Yang, Y. C. Wu, C. Y. Lin, M. H. Lai, and C. Y. Yang. 2022. Controlling the lodging risk of rice based on a plant height dynamic model. Bot. Stud. 63(1) : 25.

10.1186/s40529-022-00356-736008613PMC9411474
31

Wu, W., J. Huang, K. Cui, L. Nie, Q. Wang, F. Yang, F. Shah, F. Yao, and S. Peng. 2012. Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crops Res. 128 : 101-8.

10.1016/j.fcr.2012.01.002
32

Xue, J. and B. Su. 2017 Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017(1) : 1353691.

10.1155/2017/1353691
33

Yang, M. D., J. G. Boubin, H. P. Tsai, H. H. Tseng, Y. C. Hsu, and C. C. Stewart. 2020. Adaptive autonomous UAV scouting for rice lodging assessment using edge computing with deep learning EDANet. Comput. Electron. Agric. 179 : 105817.

10.1016/j.compag.2020.105817
34

Zhang, J, G. Li, Y. Song, Z. Liu, C. Yang, S. Tang, C. Zheng, S. Wang, and Y. Ding. 2014. Lodging resistance characteristics of high-yielding rice populations. Field Crops Res. 161 : 64-74.

10.1016/j.fcr.2014.01.012
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 69
  • No :4
  • Pages :209-215
  • Received Date : 2024-09-19
  • Revised Date : 2024-09-25
  • Accepted Date : 2024-09-27