All Issue

2021 Vol.66, Issue 4 Preview Page

Original Research Article

1 December 2021. pp. 365-374
Abstract
References
1
Ahmad, M. Z., P. Li, J. Wang, N. U. Rehman, and J. Zhao. 2017. Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Front. Plant Sci. 10.3389/fpls.2017.00735
2
Berger, M., C. A. Rasolohery, R. Cazalis, and J. Dayde. 2008. Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: distinct pathways and genetic controls. Crop Sci. 48 : 700-708. 10.2135/cropsci2007.08.0431
3
Chen, H., P. Seguin, S. Jabaji, and W. Liu. 2011. Spatial distribution of isoflavones and isoflavone-related gene expression in high- and low-isoflavone soybean cultivars. Can. J. Plant Sci. 91 : 697-705. 10.4141/cjps10192
4
Chennupati, P., P. Seguin, R. Chamoun, and S. Jabaji. 2012. Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesis. J. Agric. Food Chem. 60 : 12421-12427. 10.1021/jf303631923199070
5
Chu, S., J. Wang, Y. Zhu, S. Liu, X. Zhou, H. Zhang, C. Wang, W. Yang, Z. Tian, H. Cheng, and D. Yu. 2017. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLOS Genetics. 10.1371/journal.pgen.1006770
6
Devi, M. K. A, G. Kumar, and P. Giridhar. 2020. Effect of biotic and abiotic elicitors on isoflavone biosynthesis during seed development and in suspension cultures of soybean (Glycine max L.). 3 Biotech. 10.1007/s13205-020-2065-1
7
Gupta, O. P., A. Dahuja, A. Sachdev, P. K. Jain, S. Kumari, T. Vinutha, and S. Praveen. 2018. Cytosine methylation of isoflavone synthase gene in the genic region positively regulates its expression and isoflavone biosynthesis in soybean seeds. DNA and Cell Biology. 10.1089/dna.2018.4584
8
Gupta, O. P., D. Nigam, A. Dahuja, S. Kumar, T. Vinutha1, A. Sachdev, and S. Praveen. 2017. Regulation of isoflavone biosynthesis by miRNAs in two contrasting soybean genotypes at different seed developmental stages. Front. Plant Sci. 10.3389/fpls.2017.00567
9
Gutierrez-Gonzalez, J. J., S. K. Guttikonda, L. Tran, D. L. Aldrich, R. Zhong, O. Yu, H.T. Nguyen, and D. A. Sleper. 2010a. Differential expression of isoflavone biosynthetic genes in goybean during water deficits. Plant and Cell Physiology 51(6) : 936-948. 10.1093/pcp/pcq06520430761
10
Gutierrez-Gonzalez, J. J., X. Wu, J. D. Gillman, J. D. Lee, R. Zhong, O. Yu, G. Shannon, M. Ellersieck, H. T. Nguyen, and D. A. Sleper. 2010b. Research article intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biology. http://www.biomedcentral.com/1471-2229/10/105 10.1186/1471-2229-10-10520540761PMC3224685
11
Hu, R., C. Fan, H. Li, Q. Zhang, and Y. Fu. 2009. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Molecular Biology. 10.1186/471-2199-10-93
12
Jia, Y., Y. Ma, P. Zou, G. Cheng, J. Zhou, and S. Cai. 2019. Effects of different oligochitosans on isoflavone metabolites, antioxidant activity, and isoflavone biosynthetic genes in soybean (Glycine max) seeds during germination. J. Agric. Food Chem. 67 : 4652-4661. 10.1021/acs.jafc.8b0730030933513
13
Kim, D. G., J. I. Lyu, Y. J. Lim, J. M. Kim, N. N. Hung, S. H. Eom, S. H. Kim, J. B. Kim, C. H. Bae, and S. J. Kwon. 2021. Differential gene expression associated with altered isoflavone and fatty acid contents in soybean mutant diversity pool. Plants. 10.3390/plants10061037
14
Lee, J. W., Y. J. Yi, J. H. Lee, M. S. Jo, D. J. Choi, M. H. Ma, H. S. Kim, D. O. Kim, H. T. Yun, and Y. H. Kim. 2018. Quantification of isoflavone malonylglucosides in soybean seed during germination. Korean J. Crop Sci. 63(3) : 239-247.
15
Lim, Y. J., H. Y. Jeong, C. S. Gil, S. J. Kwon, J. K. Na, C. H. Lee, and S. H. Eom. 2020. Isoflavone accumulation and the metabolic gene expression in response to persistent UV-B irradiation in soybean sprouts. Food Chemistry. 10.1016/j.foodchem.2019.125376
16
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and 2-△△Ct method. Methods 25 : 402-408. 10.1006/meth.2001.126211846609
17
Miladinović, J., V. Dordević, S. Balešević-Tubić, K. Petrović, M. Ćeran, J. Cvejić, M. Bursać, and D. Miladinović. 2019. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Scientific Reports. 10.1038/s41598-019-46817-1.
18
Pei, R., J. Zhang, L. Tian, S. Zhang, F. Han, S. Yan, L. Wang, B. Li, and J. Sun. 2018. Identification of novel QTL associated with soybean isoflavone content. The Crop Journal 6(3) : 244-252. 10.1016/j.cj.2017.10.004
19
Wan, Q., S. Chen, Z. Shan, Z. Yang, L. Chen, C. Zhang, S. Yuan, Q. Hap, X. Zhang, D. Qiu, H. Chen, and X. Zhou. 2017. Stability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions. PLOS ONE. 10.1371/journal.pone.0189405
20
Wu, D., D. Li, X. Zhao, Y. Zhan, W. Teng, L. Qiu, H. Zheng, W. Li, and Y. Han. 2020. Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping. The Plant Journal 104 : 950-963. 10.1111/tpj.1497232862479
21
Yuk, H. J., Y. H. Song, M. J. Curtis-Long, D. W. Kim, S. G. Woo, Y. B. Lee, Z. Uddin, C. Y. Kim, and K. H. Park. 2016. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves. J. Agric. Food Chem. 64 : 7315-7324. 10.1021/acs.jafc.6b0254327626287
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 66
  • No :4
  • Pages :365-374
  • Received Date :2021. 10. 01
  • Revised Date :2021. 10. 06
  • Accepted Date : 2021. 10. 07