All Issue

2024 Vol.69, Issue 1 Preview Page
1 March 2024. pp. 34-48
Abstract
References
1
Brault, D., K. A. Stewart, and S. Jenni. 2002. Optical properties of paper and polyethylene mulches used for weed control in lettuce. HortScience. 37(1) : 87-91. 10.21273/HORTSCI.37.1.87
2
Closas, L. M., J. Costa, and A. M. Pelacho. 2017. Soil Degradable Bioplastics for a Sustainable Modern Agriculture. pp. 67-104.
3
Costa, R., A. Saraiva, L. Carvalho, and E. Duarte. 2017. The use of biodegradable mulch films on strawberry crop in Portugal. Sci. Hortic. 173 : 65-70. 10.1016/j.scienta.2014.04.020
4
Cox, M. S. 2001. The Lancaster soil test method as an alternative to the Mehlich 3 soil test method. Soil Sci. 166 : 484-489. 10.1097/00010694-200107000-00006
5
Cui, R. X. and B. W. Lee. 2001. Soil surface Energy balance and soil temperature in potato field mulched with recycled-paper and black plastic film. KJCS. 46(3) : 229-235.
6
Fan, P., H. Yu, B. Xi, and W. Tan. 2022. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or threat? Environ. Int. 163 : 1-12. 10.1016/j.envint.2022.10724435436719
7
Gao, X., D. Xie, and C. Yang. 2021. Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment. Agric. Water Manag. 255 : 1-9. 10.1016/j.agwat.2021.107053
8
Jung, J. S., D. W. Park, and H. S. Choi. 2023. Effect of biodegradable film mulching on soil environment and onion growth and yield. Korean J. Corp Sci. 68(3) : 207-215.
9
Kim, J. T., T. H. Kim, S. Kim, and K. H. Seo. 2016. Structural, thermal, and mechanical properties of PLA/PBAT/MEA blend. Polym. Korea. 40(3) : 371-379. 10.7317/pk.2016.40.3.371
10
Kim, W. H. and B. Hong. 1986. Effects of mulching materials on physical properties of soil and grain yield of sesame. KJCS. 31(3) : 260-269.
11
Kononova, M. M. 1996. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility; Pergamon Press : Oxford, UK.
12
Kyrikou, I. and D. Briassoulis. 2007. Biodegradation of Agricultural Plastic Films: A Critical Review. J. Polym. Environ. 15 : 125-150. 10.1007/s10924-007-0053-8
13
Lee, H. J., M. J. Kim, H. L. Kim, Y. B. Kwack, J. K. Kwon, K. S. Park, H. G. Choi, and K. Bekhzod. 2015. Effects of biodegradable mulching film application on cultivation of garlic. Protected Hort. Plant Fac. 24(4) : 326-332. 10.12791/KSBEC.2015.24.4.326
14
Li, B., S. Huang, H. Wang, M. Liu, S. Xue, D. Tang, W. Cheng, T. Fan, and X. Yang. 2021. Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition. Environ. Pollut. 272 : 1-9. 10.1016/j.envpol.2020.11641833433343
15
Liang, W., Y. Zhao, D. Xiao, J. Cheng, and J. Zhao. 2020. A biodegradable water-triggered chitosan/hydroxypropyl methylcellulose pesticide mulch film for sustained control of phytophthora sojae in soybean (Glycine max L. Merr.). J. Clean. Prod. 245 : 118943. 10.1016/j.jclepro.2019.118943
16
Liu, Q., Y. Wang, J. Liu, X. Liu, Y. Dong, X. Huang, Z. Zhen, J. Lv, and W. He. 2022. Degradability and properties of PBAT-Based biodegradable mulch films in field and their effects on cotton planting. Polymers. 14 : 1-15. 10.3390/polym1415315735956671PMC9371060
17
Meng, F., X. Yang, M. Riksen, and V. Geissen. 2022. Effect of different polymers of microplastics on soil organic carbon and nitrogen? a mesocosm experiment. Environ. Res. 204 : 1-10. 10.1016/j.envres.2021.11193834478726
18
Na, K., K. H. Lee, D. H. Lee, and Y. H. Bae. 2006. Biodegradable thermo-sensitive nanoparticles from poly(l-lactic acid)/poly (ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur. J. Pharm. Sci. 27 : 115-122. 10.1016/j.ejps.2005.08.01216253487
19
Ngouajio, M., R. Auras, R. T. Fernandez, and M. Rubio. 2008. Field performance of aliphatic-aromatic copolyester biodegradable mulch films in a fresh market tomato production system. HortTechnology. 18(4) : 605-610. 10.21273/HORTTECH.18.4.605
20
Qin, M., C. Chen, B. Song, M. Shen, C. Weicheng, H. Yang, G. Zeng, and J. Gong. 2021. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 312 : 1-15. 10.1016/j.jclepro.2021.127816
21
RDA. 2014. Food Crop Environment Analysis Method Handbook. National Institute of Crop Science. pp. 1-140.
22
Reay, M. K., L. M. Greenfield, M. Graf, C. E. M. Lloyd, R. P. Evershed, D. R. Chadwick, and D. L. Jones. 2023. LDPE and biodegradable PLA-PBAT plastics differentially affect plant-soil nitrogen partitioning and dynamics in a Hordeum vulgare mesocosm. J. Hazard. Mater. 447 : 1-10. 10.1016/j.jhazmat.2023.13082536708602
23
SAS (Statistical Analysis System). 2000. SAS/STAT Users Guide, Version 7. Statistical Analysis System Institute, Cary, NC, USA.
24
Shen, M., B. Song, C. Zhou, E. Almatrafi, T. Hu, G. Zeng, and Y. Zhang. 2022. Recent advances in impacts of microplastics on nitrogen cycling in the environment: A review. Sci. Total Environ. 815 : 1-9. 10.1016/j.scitotenv.2021.15274034974017
25
Sintim, H. Y., S. Bandopadhyay, M. E. English, A. I. Bary, J. L. González, J. M. DeBruyn, S. M. Schaeffer, C. Miles, and M. Flury. 2021. Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality. Geoderma. 381 : 1-10. 10.1016/j.geoderma.2020.114665
26
Somanathan, H., R. Sathasivam, S. Sivaram, S. M. Kumaresan, M. S. Muthuraman, and S. U. Park. 2022. An update on polyethylene and biodegradable plastic mulch films and their impact on the environment. Chemosphere. 307(3) : 135893. 10.1016/j.chemosphere.2022.13583935961455
27
Souza, A. G., R. R. Ferreira, J. Harada, and D. S. Rosa. 2020. Field performance on lettuce crops of poly(butyleneadipate-co-terephthalate)/polylactic acid as alternative biodegradable composites mulching films. J. Appl. Polym. Sci. 138(11) : 1-13. 10.1002/app.50020
28
Steinmetz, Z., C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Tröger, K. Muñoz, O. Frör, and G. E. Schaumann. 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 550 : 690-705. 10.1016/j.scitotenv.2016.01.15326849333
29
Tarara, J. M., 2000. Microclimate modification with plastic mulch. Hortscience. 35 : 169-180. 10.21273/HORTSCI.35.2.169
30
Touchaleaumem, F., H. A. Coussy, G. César, G. Raffard, N. Gontard, and E. Gastaldi. 2018. How performance and fate of biodegradable mulch films are impacted by field ageing. J. Polym. Environ. 26 : 2588-2600. 10.1007/s10924-017-1154-7
31
Yin, M., Y. Li, H. Feng, and P. Chen. 2019. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric. Water Manag. 216 : 127-137. 10.1016/j.agwat.2019.02.004
32
Zhang, M., Y. Xue, T. Jin, K. Zhang, Z. Li, C. Sun, Q. Mi, and Q. Li. 2022. Effect of long-term biodegradable film mulch on soilphysicochemical and microbial properties. Toxics. 129(10) : 1-14. 10.3390/toxics1003012935324754PMC8949305
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 69
  • No :1
  • Pages :34-48
  • Received Date : 2024-02-07
  • Revised Date : 2024-02-14
  • Accepted Date : 2024-02-15