All Issue

2019 Vol.64, Issue 4 Preview Page

Original Research Article

31 December 2019. pp. 422-431
Abstract
References
1
Abendroth, L. J., R. W. Elmore, M. J. Boyer, and S. K. Marlay. 2011. Corn growth and development. PMR 1009. Iowa State University Extension, Ames, Iowa.
2
Abrecht, D. G. and P. S. Carberry. 1993. The influence of water deficit prior to tassel initiation on maize growth, development and yield. Field Crops Research 31 : 55-69.
10.1016/0378-4290(93)90050-W
3
Araus, J. L., G. A. Slafer, M. P. Reynolds, and C. Royo. 2002. Plant breeding and water relations in C3 cereals: what to breed for? Ann. Bot. 89 : 925-940.
10.1093/aob/mcf04912102518PMC4233799
4
Bassetti, P. and M. E. Westgate. 1993. Water deficit affects receptivity of maize silks. Crop Sci. 33 : 279-282.
10.2135/cropsci1993.0011183X003300020013x
5
Benešová, M., D. Hola, L. Fischer, P. L. Jedelsky, F. Hnilička, N. Wilhelmova, O. Rothova, M. Kočová, D. Prochazkova, J. Honnerova, L. Fridrichova, and H. Hniličková. 2012. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to shortterm dehydration? PLoS ONE 7:e38017.
10.1371/journal.pone.003801722719860PMC3374823
6
Claassen, M. M. and R. H. Shaw. 1970. Water Deficit Effects on Corn. I. Grain Components. Agronomy Journal 62 : 652-655.
10.2134/agronj1970.00021962006200050032x
7
Cordell, D., A. Rosemarin, J. Smit, and A. Schroder. 2011. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84 : 747-758.
10.1016/j.chemosphere.2011.02.03221414650
8
Cramer, G. R., S. C. Van Sluyter, D. W. Hopper, D. Pascovici, T. Keighley, and P. A. Haynes. 2013. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol. 13 : 49.
10.1186/1471-2229-13-4923514573PMC3608200
9
Dai, A. 2012. Increasing drought under global warming in observations and models. Nat. Clim. Change 3 : 52-58.
10.1038/nclimate1633
10
Denmead, O. T. and R. H. Shaw. 1960. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron. J. 52 : 272-274.
10.2134/agronj1960.00021962005200050010x
11
de Vienne, D., A. Leonardi, C. Damerval, and M. Zivy. 1999. Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J. Exp. Bot. 50 : 303-309.
10.1093/jxb/50.332.303
12
Eck, H. V. 1986. Effects of Water Deficits on Yield, Yield Components, and Water Use Efficiency of Irrigated Corn. Agron. J. 78 : 1035-1040.
10.2134/agronj1986.00021962007800060020x
13
Farré, I. and J. M. Faci. 2006. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agric. Water Manag. 83 : 135-143.
10.1016/j.agwat.2005.11.001
14
Hayano-Kanashiro, C., C. Calderon-Vazquez, E. Ibarra-Laclette, L. Herrera-Estrella, and J. Simpson. 2009. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One 4: e7531.
10.1371/journal.pone.000753119888455PMC2766256
15
Heiniger, R. W. 2001. The impact of early drought on corn yield. North Carolina State University.
16
Hsiao, T. C. 1973. Plant responses to water stress. Annual Review of Plant physiology 24 : 519-570.
10.1146/annurev.pp.24.060173.002511
17
Hu, X., X. Wu, C. Li, M. Lu, T. Liu, Y. Wang, and W. Wang. 2012. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS One 7: e49500.
10.1371/journal.pone.004950023152915PMC3496715
18
Kim, S. G., S. T. Kim, Y. Kang, Y. Wang, W. Kim, and K. Y. Kang. 2008. Proteomic analysis of reactive oxygen species (ROS)-related proteins in rice roots. Plant Cell Rep. 27 : 363-375.
10.1007/s00299-007-0441-517932678
19
Kim, S. G., H. H. Bae, H. J. Jung, J. S. Lee, J. T. Kim, T. H. Go, B. Y. Son, S. B. Baek, Y. U. Kwon, M. O. Woo, and S. H. Shin. 2014. Physiological and protein profiling response to drought stress in KS141, a Korean maize inbred line. J. Crop Sci. Biotechnol. 17 : 273-280.
10.1007/s12892-014-0110-5
20
Kim, S. G., J. S. Lee, J. T. Kim, Y. S. Kwon, D. W. Bae, H. H. Bae, B. Y. Son, S. B. Baek, Y. U. Kwon, M. O. Woo, and S. H. Shin. 2015. Physiological and proteomic analysis of the response to drought stress in an inbred Korean maize line. Plant Omics. J. 8 : 159-168.
21
Li, R., W. Wang, W. Wang, F. Li, Q. Wang, Y. Xu, and S. Wang. 2015. Overexpression of a cysteine proteinase inhibitor gene from jatgropha curcas confers enhanced tolerance to salinity stress. E. J. Biotechnology 18 : 368-375.
10.1016/j.ejbt.2015.08.002
22
Lobell, D. B., M. Banziger, C. Magorokosho, and B. Vivek. 2011. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1 : 42-45.
10.1038/nclimate1043
23
Nayyar, H. and D. Gupta. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ. Exp. Bot. 58 : 106-113.
10.1016/j.envexpbot.2005.06.021
24
NeSmith, D. S. and J. T. Ritchie. 1992. Maize (Zea mays L.) response to a severe soil water-deficit during grain-filling. Field Crops Res. 29 : 23-35.
10.1016/0378-4290(92)90073-I
25
Pechanova, O., T. Taká, J. Samaj, and T. Pechan 2013. Maize proteomics: an insight into the biology of an important cereal crop. Proteomics 13 : 637-662.
10.1002/pmic.20120027523197376
26
Riccardi, F., P. Gazeau, M. P. Jacquemot, D. Vincent, and M. Zivy. 2004. Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physiol. Biochem. 42 : 1003-1011.
10.1016/j.plaphy.2004.09.00915707837
27
Smart, R. E. and Bingham, G. E. 1974. Rapid estimates of relative water content. Plant Physiology 53(2) : 258-260.
10.1104/pp.53.2.25816658686PMC541374
28
Sugihara, K., N. Hanagata, Z. Dubinsky, S. Baba, and I. Karube. 2000. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the manrove Bruguiera gymnorrhiza. Plant Cell Physiol. 41 : 1279-1285.
10.1093/pcp/pcd06111092914
29
Song, C., F. Zeng, W. Feibo, W. Ma, and G. Zhang. 2015. Proteomic analysis of nitrogen stress-responsive proteins in two rice cultivars differing in N utilization efficiency. Journal of Integrated Omics 78-87.
30
Uhrig, R. G., A. M. Labandera, and G. B. Moorhead. 2013. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends Plant Sci. 18 : 505-513.
10.1016/j.tplants.2013.05.00423790269
31
Yordanov, I., V. Velikova, and T. Tsonev. 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. Special issue 187-206.
32
Zheng, J., J. Fu, M. Gou, J. Huai, Y. Liu, M. Jian, Q. Huang, X. Guo, Z. Dong, H. Wang, and G. Wang. 2010. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol. Biol. 72 : 407-421.
10.1007/s11103-009-9579-619953304
33
Zlatev, Z. S. and I. T. Yordanov. 2004. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulgarian Journal of Plant Physiology 30 : 3-18.
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 64
  • No :4
  • Pages :422-431
  • Received Date : 2019-09-05
  • Revised Date : 2019-10-07
  • Accepted Date : 2019-10-24