All Issue

2024 Vol.69, Issue 3 Preview Page

Original Research Article

1 September 2024. pp. 154-162
Abstract
References
1

Alzubaidi, L., J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaria, M. A. Fadhel, M. Al-Amidie, and L. Farhan. 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data 8 : 53. https://doi.org/10.1186/s40537-021-00444-8

10.1186/s40537-021-00444-833816053PMC8010506
2

Bak, H. J., D. W. Kwon, W. G. Sang, H. Y. Ban, S. Y. Chang, J. K. Beak, Y. H. Lee, W. J. Im, M. C. Seo and J. I. Cho. 2023. Deep learning approaches for accurate weed Area assessment in maize fields. Korean Journal of Agricultural and Forest Meteorology 25(1) : 17-27.

3

Ban, H. Y., J. K. Beak, W. G. Sang, J. H. Kim, and M. C. Seo. 2021. Estimation of the lodging area in rice using deep learning. Korean J. Crop Sci. 66(2) : 105-111.

4

Bouguettaya, A., H. Zarzour, A. Kechida, and A. M. Taberkit. 2022. Deep learning techniques to classify agricultural crops through UAVimagery: a review. Neural Computing and Applications 34 : 9511-9536. https://doi.org/10.1007/s00521-022-07104-9

10.1007/s00521-022-07104-935281624PMC8898032
5

Dobosz, B., D. Gozdowski, J. Koronczok, J. Žukovskis, and E. Wójcik-Gront. 2023. Evaluation of maize crop damage using UAV-Based RGB and multispectral imagery. Agriculture 13(8) : 1627. https://doi.org/10.3390/agriculture13081627

10.3390/agriculture13081627
6

Hama, A., K. Tanaka, B. Chen, and A. Kondoh. 2021. Examination of appropriate observation time and correction of vegetation index for drone-based crop monitoring. Journal of Agricultural Meteorology 77(3) : 200-209. https://doi.org/10.2480/agrmet.D-20-00047

10.2480/agrmet.D-20-00047
7

Hayashi, S., A. Kamoshita, and J. Yamagishi. 2006. Effect of planting density on grain yield and water productivity of rice grown in flooded and non-flooded fields in Japan. Journal of Plant Prod. Sci. 9(3) : 298-311.

10.1626/pps.9.298
8

Hwang, W. H., H. S. Lee, S. Y. Yang, and C. G. Lee. 2023. Change in yield characteristics by transplanting density in major cultivated rice. Korean J. Crop Sci. 68(1) : 1-7

9

Kanetaka, M., A. Takahashi, and S. Azuma. 2004. Transplanting culture by dense sowing and sparse planting of Koshihikari. The Hor. Crop Sci. 40 : 11-14.

10

Kazemi, F. and E. Parmehr. 2022. Evaluation of rgb vegetation indices derived from uav images for rice crop growth monitoring. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences X-4/W1-2022 : 385-390. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-385-2023

10.5194/isprs-annals-X-4-W1-2022-385-2023
11

Kim, G. Y., S. B. Lee, J. S. Lee, E. J. Choi, and J. H. Ryu. 2012. Mitigation of greenhouse gases by water management of SRI (System of Rice Intensification) in rice paddy fields. Korean J. Soil Sci. 45(6) : 1173-1178.

10.7745/KJSSF.2012.45.6.1173
12

Lee, Y. H., H. J. Bak, J. W. Kim, B. K. Kim, H. S. Jang, D. W. Kim, J. T. Youn, and T. Y. Hwang. 2022. Evaluation of leaf area, canopy coverage light interception, and exposure setting in wheat using RGB color vegetation indices. Journal of Agriculture & Life Science 56(6) : 1-13.

10.14397/jals.2022.56.6.1
13

Li, B., X. Xu, J. W. Han, L. Zhang, C. Bian, L. Jin, and J. Liu. 2019. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods 15 : 15. https://doi.org/10.1186/s13007-019-0399-7

10.1186/s13007-019-0399-730792752PMC6371461
14

Norman, U. 2008. The System of Rice Intensification (SRI) as a system of agricultural innovation. Jurnal Tanah dan Lingkungan 10(1) : 27-40

10.29244/jitl.10.1.27-40
15

Redmon, J., S. Divvala, R. Girshick and A. Farhadi. 2016. You only look once: Unified, Real-Time Object Detection. arXiv: 1506.02640v5.

10.1109/CVPR.2016.91
16

Shen, J., Q. Wang, M. Zhao, J. Hu, J. Wang, M. Shu, Y. Liu, W. Guo, H. Qiao, Q. Niu and J. Yue. 2024. Mapping maize planting densities using unmanned aerial vehicles, multispectral remote sensing, and deep learning technology. Drones 8, 140. https://doi.org/10.3390/drones8040140

10.3390/drones8040140
17

Shorten, C. and T. M. Khoshgoftaar. 2019. A survey on image data augmentation for deep learning. Journal of Big Data. 6:60 https://doi.org/10.1186/s40537-019-0197-0

10.1186/s40537-019-0197-0
18

Ultralytics. 2020. YOLOv5: A family of object detection architectures and models. Ultralytics GitHub Repository. Available at: https://github.com/ultralytics/yolov5

19

Yang, S. Y., W. H, Hwang, J. H. Jeong, H. S. Lee, and C. G. Lee. 2021. Changes in growth and yield of different rice varieties under different planting densities in low-density transplanting cultivation. Korean J. Crop Sci. 66(4) : 279-288.

Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 69
  • No :3
  • Pages :154-162
  • Received Date : 2024-07-31
  • Revised Date : 2024-08-20
  • Accepted Date : 2024-08-21